Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Simon, Ralph (Ed.)Animals can actively encode different types of identity information in learned communication signals, such as group membership or individual identity. The social environments in which animals interact may favor different types of information, but whether identity information conveyed in learned signals is robust or responsive to social disruption over short evolutionary timescales is not well understood. We inferred the type of identity information that was most salient in vocal signals by combining computational tools, including supervised machine learning, with a conceptual framework of “hierarchical mapping”, or patterns of relative acoustic convergence across social scales. We used populations of a vocal learning species as a natural experiment to test whether the type of identity information emphasized in learned vocalizations changed in populations that experienced the social disruption of introduction into new parts of the world. We compared the social scales with the most salient identity information among native and introduced range monk parakeet (Myiopsitta monachus) calls recorded in Uruguay and the United States, respectively. We also evaluated whether the identity information emphasized in introduced range calls changed over time. To place our findings in an evolutionary context, we compared our results with another parrot species that exhibits well-established and distinctive regional vocal dialects that are consistent with signaling group identity. We found that both native and introduced range monk parakeet calls displayed the strongest convergence at the individual scale and minimal convergence within sites. We did not identify changes in the strength of acoustic convergence within sites over time in the introduced range calls. These results indicate that the individual identity information in learned vocalizations did not change over short evolutionary timescales in populations that experienced the social disruption of introduction. Our findings point to exciting new research directions about the robustness or responsiveness of communication systems over different evolutionary timescales.more » « less
-
Abstract Gene tree discordance is expected in phylogenomic trees and biological processes are often invoked to explain it. However, heterogeneous levels of phylogenetic signal among individuals within data sets may cause artifactual sources of topological discordance. We examined how the information content in tips and subclades impacts topological discordance in the parrots (Order: Psittaciformes), a diverse and highly threatened clade of nearly 400 species. Using ultraconserved elements from 96% of the clade’s species-level diversity, we estimated concatenated and species trees for 382 ingroup taxa. We found that discordance among tree topologies was most common at nodes dating between the late Miocene and Pliocene, and often at the taxonomic level of the genus. Accordingly, we used two metrics to characterize information content in tips and assess the degree to which conflict between trees was being driven by lower-quality samples. Most instances of topological conflict and nonmonophyletic genera in the species tree could be objectively identified using these metrics. For subclades still discordant after tip-based filtering, we used a machine learning approach to determine whether phylogenetic signal or noise was the more important predictor of metrics supporting the alternative topologies. We found that when signal favored one of the topologies, the noise was the most important variable in poorly performing models that favored the alternative topology. In sum, we show that artifactual sources of gene tree discordance, which are likely a common phenomenon in many data sets, can be distinguished from biological sources by quantifying the information content in each tip and modeling which factors support each topology. [Historical DNA; machine learning; museomics; Psittaciformes; species tree.]more » « less
-
null (Ed.)Synopsis Global environmental changes induced by human activities are forcing organisms to respond at an unprecedented pace. At present we have only a limited understanding of why some species possess the capacity to respond to these changes while others do not. We introduce the concept of multidimensional phenospace as an organizing construct to understanding organismal evolutionary responses to environmental change. We then describe five barriers that currently challenge our ability to understand these responses: (1) Understanding the parameters of environmental change and their fitness effects, (2) Mapping and integrating phenotypic and genotypic variation, (3) Understanding whether changes in phenospace are heritable, (4) Predicting consistency of genotype to phenotype patterns across space and time, and (5) Determining which traits should be prioritized to understand organismal response to environmental change. For each we suggest one or more solutions that would help us surmount the barrier and improve our ability to predict, and eventually manipulate, organismal capacity to respond to anthropogenic change. Additionally, we provide examples of target species that could be useful to examine interactions between phenotypic plasticity and adaptive evolution in changing phenospace.more » « less
An official website of the United States government
